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Abstract

Exploratory factor analysis (EFA) is a frequently used multivariate analysis tech-

nique in statistics. Jennrich and Sampson (1966) solved a significant EFA factor load-

ing matrix rotation problem by deriving the direct Quartimin rotation. Jennrich was

also the first to develop standard errors for rotated solutions although these have still

not made their way into most statistical software programs. This is perhaps because

Jennrichs achievements were partly overshadowed by the subsequent development of

confirmatory factor analysis (CFA) by Joreskog (1969). The strict requirement of

zero cross-loadings in CFA, however, often does not fit the data well and has led to

a tendency to rely on extensive model modification to find a well-fitting model. In

such cases, searching for a well-fitting measurement model may be better carried out

by EFA (Browne, 2001). Furthermore, misspecification of zero loadings usually leads

to distorted factors with over-estimated factor correlations and subsequent distorted

structural relations. This paper describes an EFA-SEM (ESEM) approach, where in

addition to or instead of a CFA measurement model, an EFA measurement model with

rotations can be used in a structural equation model. The ESEM approach has recently

been implemented in the Mplus program. ESEM gives access to all the usual SEM pa-

rameter and the loading rotation gives a transformation of structural coefficients as

well. Standard errors and overall tests of model fit are obtained. Geomin and Target

rotations are discussed. Examples of ESEM models include multiple-group EFA with

measurement and structural invariance testing, test-retest (longitudinal) EFA, EFA

with covariates and direct effects, and EFA with correlated residuals. Testing strate-

gies with sequences of EFA and CFA models are discussed. Simulated and real data

are used to illustrate the points.
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INTRODUCTION

The latent variable measurement specification in structural equation modeling (SEM;

Joreskog and Sorbom, 1979; Muthén, 1984; Bollen, 1989; Browne and Arminger, 1995)

uses the Joreskog (1969) confirmatory factor analysis (CFA) model. Based on theory

and prior analyses, the CFA measurement model specifies a number of factor loadings

fixed at zero to reflect a hypothesis that only certain factors influence certain factor

indicators. Often a simple structure is specified where each indicator is influenced

by a single factor, i.e. there are no cross-loadings, sometimes referred to as variable

complexity of one. The number of such zero loading restrictions is typically much larger

than the number of restrictions needed to identify the factor analysis measurement

model, which as in exploratory factor analysis with m factors is m2 restrictions on the

factor loadings, factor variances, and factor covariances. The use of CFA measurement

modeling in SEM has the advantage that researchers are encouraged to formalize their

measurement hypotheses and develop measurement instruments that have a simple

measurement structure. Incorporating a priori substantive knowledge in the form of

restrictions on the measurement model makes the definition of the latent variables

better grounded in subject-matter theory and leads to parsimonious models.

The use of CFA measurement modeling in SEM also has disadvantages and these

are likely to have contributed to poor applications of SEM where the believability and

replicability of the final model is in doubt. While technically appealing, CFA requires

strong measurement science which is often not available in practice. A measurement

instrument often has many small cross-loadings that are well motivated by either sub-

stantive theory or by the formulation of the measurements. The CFA approach of fixing

many or all cross-loadings at zero may therefore force a researcher to specify a more

parsimonious model than is suitable for the data. Because of this, models often do not

fit the data well and there is a tendency to rely on extensive model modification to find

a well-fitting model. Here, searching for a well-fitting measurement model is often aided

by the use of model modification indices. A critique of the use of model searches us-

ing modification indices is given for example in MacCallum, Roznowski, and Necowitz

(1992). In such situations of model uncertainty, Browne (2001) advocates exploratory
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rather than confirmatory approaches:

”Confirmatory factor analysis procedures are often used for exploratory purposes.

Frequently a confirmatory factor analysis, with pre-specified loadings, is rejected and a

sequence of modifications of the model is carried out in an attempt to improve fit. The

procedure then becomes exploratory rather than confirmatory — In this situation the

use of exploratory factor analysis, with rotation of the factor matrix, appears preferable.

— The discovery of misspecified loadings ... is more direct through rotation of the factor

matrix than through the examination of model modification indices.”

Furthermore, misspecification of zero loadings in CFA tends to give distorted fac-

tors. When non-zero cross-loadings are specified as zero, the correlation between factor

indicators representing different factors is forced to go through their main factors only,

usually leading to over-estimated factor correlations and subsequent distorted struc-

tural relations.

For the reasons given above, it is important to extend structural equation modeling

to allow less restrictive measurement models to be used in tandem with the traditional

CFA models. This offers a richer set of a priori model alternatives that can be subjected

to a testing sequence. This paper describes an exploratory structural equation modeling

(ESEM) approach, where in addition to or instead of CFA measurement model parts,

EFA measurement model parts with factor loading matrix rotations can be used. For

each EFA measurement model part with m factors, only m2 restrictions are imposed on

the factor loading matrix and the factor covariance matrix. ESEM gives access to all

the usual SEM parameters, for example residual correlations, regressions of factors on

covariates, and regressions among factors. Multiple-group analysis with intercept and

mean structures are also handled. The ESEM approach has recently been implemented

in the Mplus program.

Exploratory factor analysis (EFA) is a frequently used multivariate analysis tech-

nique in statistics. Jennrich and Sampson (1966) solved a significant EFA factor loading

matrix rotation problem by deriving the direct Quartimin rotation. Jennrich was also

the first to develop standard errors for rotated solutions. Cudeck and O’Dell (1994)

provide a useful discussion on the benefits of considering standard errors for the rotated
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factor loadings and factor correlation matrix in EFA. However, EFA standard errors

have still not made their way into most statistical software programs (Jennrich, 2007)1,

perhaps because Jennrichs achievements were partly overshadowed by the subsequent

development of CFA by Joreskog (1969). The work to be presented can therefore also

be seen as a further development and modernization of EFA, continuing the classic

psychometric work that was largely abandoned. Three examples can be mentioned.

Correlated residuals among factor indicators sharing similar wording can confound the

detection of more meaningful factors using conventional EFA; allowing such parame-

ters in an extended EFA can now give new measurement insights. Comparing EFA

factor loadings across time in longitudinal studies or across groups of individuals can

now be done using rigorous likelihood-ratio testing without the researcher being forced

to switch from EFA to CFA.

It should be made clear that the development in this paper is not intended to

encourage a complete replacement of CFA with EFA measurement modeling in SEM.

Instead, the intention is to add further modeling flexibility by providing an option that

in some cases is more closely aligned with reality, reflecting more limited measurement

knowledge of the researcher or a more complex measurement structure. There will still

be many situations where a CFA approach is preferred. Apart from situations where the

measurement instruments are well understood, this includes applications where a CFA

specification lends necessary stability to the modeling. As one example, multi-trait,

multi-method (MTMM) modeling relies on CFA specification of both the trait and

the methods part of the model. Although it is in principle possible with the methods

presented here to let the trait part be specified via EFA, leaving the methods part

specified as CFA, this may not provide easy recovery of the data-generating parameter

values.

In ESEM, the loading matrix rotation gives a transformation of both measurement

and structural coefficients. Extending the work summarized in Jennrich (2007), ESEM

provides standard errors for all rotated parameters. Overall tests of model fit are also

obtained. With EFA measurement modeling, the reliance on a good rotation method

1A notable exception is the CEFA program developed by Brown, Cudeck, Tateneni, and Mels.
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becomes important. The paper discusses the Geomin rotation (Yates, 1987) which is

advantageous with variable complexity greater than one (Browne, 2001; McDonald,

2005). Target rotation (Browne, 2001) is a less-known rotation technique that concep-

tually is situated in between of EFA and CFA, which is also implemented in the general

ESEM framework. Examples of ESEM models are presented including multiple-group

EFA with measurement invariance 2. Testing strategies with sequences of EFA and

CFA models are discussed. Simulated and real data are used to illustrate the points.

The outline of this paper is as follows. First a simple ESEM model is presented.

Next the general ESEM model is described as well as an outline of the estimation

method. The ESEM modeling is then expanded to include constrained rotation meth-

ods that are used to estimate for example measurement invariant ESEM models and

multiple group EFA models. Various rotation criteria and their properties are de-

scribed. An empirical example is also presented to illustrate the advantages of ESEM

in real-data modeling. Several simulation studies are presented as well. The choice of

the rotation criterion is also discussed. The paper concludes with a summary of the

presented methodology.

SIMPLE EXPLORATORY STRUCTURAL EQUATION MODEL

Suppose that there are p dependent variables Y = (Y1, ..., Yp) and q independent vari-

ables X = (X1, ..., Xq). Consider the general structural equation model with m latent

variables η = (η1, ..., ηm)

Y = ν + Λη +KX + ε (1)

η = α+Bη + ΓX + ζ (2)

The standard assumptions of this model are that the ε and ζ are normally distributed

residuals with mean 0 and variance covariance matrix Θ and Ψ respectively. The

model can be extended to multiple group analysis, where for each group model (1-2) is

estimated and some of the model parameters can be the same in the different groups.

2Examples of ESEM models illustrating structural invariance testing, EFA with covariates and direct

effects, and EFA with correlated residuals are available in Bengt Muthén’s multimedia presentation on this

topic available at http://www.ats.ucla.edu/stat/mplus/seminars/whatsnew in mplus5 1/default.htm.
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The model can also be extended to include categorical variables and censored variables

as in Muthén (1984) using limited-information weighted least squares estimation. For

each categorical and censored variable Y ∗ is used instead of Y is equation (1), where

Y ∗ is an underlying unobserved normal variable. For each categorical variables there

is a set of parameters τk such that

Y = k ⇔ τk < Y ∗ < τk+1. (3)

Thus a linear regression for Y ∗ is equivalent to a Probit regression for Y . Similarly,

for censored variables with a censoring limit of c

Y =

{
Y ∗ if Y ≥ c

c if Y ≤ c
(4)

All of the parameters in the above model can be estimated with the maximum likeli-

hood estimation method, however, this structural model is generally unidentified and

typically many restrictions need to be imposed on the model. Otherwise the maxi-

mum likelihood estimates will be simply one set of parameter estimates among many

equivalent solutions.

One unidentified component is the scale of the latent variable. Two different ap-

proaches are generally used to resolve this non-identification. The first approach is to

identify the scale of the latent variable by fixing its variance to 1. The second approach

is to fix one of the Λ parameters in each column to 1. The two approaches are gener-

ally equivalent and a simple reparameterization can be used to obtain the parameter

estimates from one to the other scales. In what follows the first approach is taken. It is

assumed that the variance of each latent variable is 1. Later on the model is expanded

to include latent factors with scale identified by method 2. It is also assumed in this

section that all Λ parameters are estimated.

Even when the scale of the latent variable is identified, however, there are additional

identifiability issues when the number of latent factors m is greater than 1. For each

square matrixH of dimensionm one can replace the η vector byHη in model (1-2). The

parameters in the model will be altered as well. The Λ will be replaced by ΛH−1, the α

vector is replaced by Hα, the Γ matrix is replaced by HΓ, the B matrix is replaced by

HBH−1 and the Ψ matrix is replaced by HΨHT . Since H has m2 elements the model
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has a total of m2 indeterminacies. In the discussion that follows two specific models

are considered. The first model is the orthogonal model where Ψ is restricted to be

the identity matrix, i.e., the latent variables have no residual correlation. The second

model which is the oblique model where Ψ is estimated as an unrestricted correlation

matrix, i.e., all residual correlations between the latent variables are estimated as free

parameters. Later on the model is generalized to include structured variance covariance

matrices Ψ.

First consider the identification issues for the orthogonal model. For each orthog-

onal matrix H of dimension m, i.e., a square matrix H such that HHT = I, one can

replace the η vector by Hη and obtain an equivalent model. That is because the vari-

ance Hη is again the identity matrix. Again the Λ matrix is replaced by ΛH−1 and

similarly the rest of the parameters are changed. Exploratory factor analysis (EFA)

offers a solution to this non-identification problem. The model is identified by mini-

mizing

f(Λ∗) = f(ΛH−1) (5)

over all orthogonal matrices H, where f is a function called the rotation criteria or

simplicity function. Several different simplicity functions have been utilized in EFA, see

Jennrich and Sampson (1966) and Appendix A. For example, the Varimax simplicity

function is

f(Λ) = −
p∑

i=1

(
1
m

m∑
j=1

λ4
ij −

(
1
m

m∑
j=1

λ2
ik

)2
)
. (6)

These functions are usually designed so that among all equivalent Λ parameters the

simplest solution is obtained.

Minimizing the simplicity function is equivalent to imposing the following con-

straints on the parameters Λ, see Archer and Jennrich (1973),

R = ndg

(
ΛT ∂f

∂Λ
− ∂f

∂Λ

T

Λ

)
= 0. (7)

where the ndg refers to the non-diagonal entries of the matrix. Note that the above

matrix is symmetric and therefore these are m(m−1)/2 constraints. These constraints

are in addition to the m(m+1)/2 constraints that are directly imposed on the Ψ matrix

for a total of m2 constraints needed to identify the model.
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The identification for the oblique model is developed similarly. The simplicity

function

f(Λ∗) = f(ΛH−1) (8)

is minimized over all matrices H such that diag(HΨHT − I) = 0, i.e., matrices H

such that all diagonal entries of HΨHT are 1. In this case minimizing the simplicity

function is equivalent to imposing the following constraints on the parameters Λ and

Ψ

R = ndg(ΛT ∂f

∂Λ
Ψ−1) = 0 (9)

The above equation specifies m(m−1) constraints because the matrix is not symmetric.

These constraints are in addition to the m constraints that are directly imposed on the

Ψ matrix for a total of m2 constraints needed to identify the model.

Note however that the requirement for m2 constraints is only a necessary condition

and in some cases it may be insufficient. A simple implicit method for determining

model identifiability is to compute the Fisher information matrix. In most cases the

model is identified if and only if the Fisher information matrix is not singular, see

Section 4.7.4 in Silvey (1970). This method can be used in the ESEM framework

as well. The identification of the rotated solution is established by computing the

bordered information matrix, see Appendix C, which is algebraically equivalent to the

Fisher information matrix. The rotated solution is identified if and only if the bordered

information matrix is not singular. An overview of alternative explicit methods for

establishing identifiability is given in Hayashi and Marcoulides (2006).

If the dependent variables are on different scales the elements in the Λ matrix will

also be on different scales which in turn can lead to imbalance of the minimization of

the simplicity function and consequently lead to a suboptimal Λ∗ solution. In EFA

this issue is resolved by performing a standardization of the parameters before the

rotation. Let Σd be a diagonal matrix of dimension p where the i−th diagonal entry

is the standard deviation of the Yi variable. The standardized parameters Λ are then

Σ−1
d Λ, i.e., in EFA analysis

f(Σ−1
d ΛH−1) (10)
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is minimized over all oblique or orthogonal matrices H. An equivalent way of conduct-

ing the EFA analysis is to first standardize all dependent variables so that they have 0

mean and variance 1 and then complete the rotation analysis using the unstandardized

Λ matrix. Alternative standardization techniques are described in Appendix B.

The structural equation model (1-2) is similarly standardized to avoid any undesired

effects from large variation in the scales of the dependent variables. Define the diagonal

matrix

Σd =
√
diag(ΛΨΛT + Θ) (11)

and the normalized loadings matrix Λ0 as

Λ0 = Σ−1
d Λ. (12)

The simplicity function

f(Λ0H
−1) (13)

is then minimized over all oblique or orthogonal matricesH. Denote the optimal matrix

H by H∗. Call this matrix the rotation matrix. Denote the optimal Λ0 by Λ∗
0. Call Λ∗

0

the rotated standardized solution. Note that after the rotation the optimal Λ∗ matrix

should be obtained in the original scale of the dependent variables

Λ∗ = ΣdΛ∗
0. (14)

Note here that formally speaking the squares of the diagonal entries of Σd are not the

variances of Yi. That is because the standardization factor as defined in (11) does not

include the remaining part of the structural model such as the independent variables

X as well as equation (2). Nevertheless the simpler standardization factor defined in

(11) will reduce generally any discrepancies in the scales of the dependent variables.

In addition, formula (11) simplifies the computation of the asymptotic distribution of

the parameters because it does not include the variance covariance of the indepen-

dent variables X which typically is not part of the model. The model usually includes

conditional on X distributional assumptions and estimation only for the dependent

variables. Note also that if the model does not include any covariates or other struc-

tural equations, i.e., if the model is equivalent to the standard EFA model then the

standardization factor Σd is the standard deviation just like in EFA analysis.
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The exploratory structural equation model (ESEM) described above can be esti-

mated simply by constrained maximum likelihood estimation. This however, is not

the algorithm implemented in Mplus. The parameter constraints (9-7) are rather com-

plicated and constrained maximization is more prone to convergence problem in such

situations. The algorithm used in Mplus is based on the gradient projection algorithm

(GPA) developed in Jennrich (2001) and Jennrich (2002).

In the traditional EFA analysis the rotation of the factors affects only the param-

eters Λ and the Ψ matrix. In the exploratory structural equation model (ESEM)

described above nearly all parameters are adjusted after the optimal rotation H∗ is

determined. The following formulas describe how the rotated parameters are obtained

ν∗ = ν (15)

Λ∗ = Λ(H∗)−1 (16)

K∗ = K (17)

Θ∗ = Θ (18)

α∗ = H∗α (19)

B∗ = H∗B(H∗)−1 (20)

Γ∗ = H∗Γ (21)

Ψ∗ = (H∗)T ΨH∗ (22)

Note also that in selecting the optimal factor rotation H∗ we only use the measure-

ment part of the model, i.e., only the Λ0 parameter, which is computed from the Λ, Ψ

and Θ parameters. In this treatment the focus is on simplifying the loadings structure

with the rotation. The structural part of the model is subsequently rotated but in this

treatment the rotation does not simplify the structural part of the model in any way.

Alternative approaches that somehow incorporate all structural parameters are pos-

sible, but such an approach would lead to additional computational complexities that

may be difficult to justify. In addition, such an approach would be difficult to interpret.

The rotation is designed to simplify the loading structure so that the factors have a
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clear interpretation. The structural parameters on the other hand are not a target for

simplification. Typically we are interested in more significant coefficients among B, Γ

and K and are not interested in producing as few as possible significant coefficients

using the rotation.

GENERAL EXPLORATORY STRUCTURAL EQUATION MODEL

The general ESEM model is described again by the equations

Y = ν + Λη +KX + ε (23)

η = α+Bη + ΓX + ζ (24)

where the factors ηi can be divided in two groups, exploratory factors and confirmatory

factors. Let η1, η2, ..., ηr be the exploratory factors and ηr+1, ..., ηm be the confirmatory

factors. The confirmatory factors are identified the same way factors are identified in

traditional SEM models, for example, by having different factor indicator variables for

each of the factors. The group of exploratory factors is further divided into blocks of

exploratory latent variables that are measured simultaneously. Suppose that a block

of exploratory latent variables consists of η1, η2, ..., ηb. For each exploratory block a

block of dependent factor indicator variables are assigned. Suppose the Y1, Y2, ... ,

Yc are the indicator variables assigned to the exploratory block. Note that different

exploratory blocks can use the same factor indicators. Similarly exploratory factors

can use the same factor indicators as confirmatory factors. The measurement model

for η1, η2, ..., ηb based on the indicators Y1, Y2, ... , Yc is now based and identified

as the model in the previous section, using an optimal rotation for the exploratory

factor block. Equation (24) uses all the confirmatory and exploratory factors. If H∗

represent a combined optimal rotation matrix which consists of the optimal rotations

for each of the exploratory factor blocks the rotated estimates are obtained from the

set of unidentified parameters again via formulas (15-22).

There are certain restrictions that are necessary to impose on the flexibility of this

model. Exploratory factors have to be simultaneously appearing in a regression or

correlated with. For example if a factor in an exploratory block is regressed on a
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covariate Xi all other factors in that block have to be regressed on that covariate.

Similarly if a variable is correlated with an exploratory factor, the variable has to

be correlated to all other variables in that exploratory block, i.e., these covariance

parameters can either be simultaneously 0 or they have to be simultaneously free and

unconstrained.

ESTIMATION

This section describes the procedure used to estimate the ESEM model, including the

estimates for the asymptotic distribution of the parameter estimates. The estimation

consist of several steps. In the first step using the ML estimator a SEM model is

estimated where for each exploratory factor block the factor variance covariance matrix

is specified as Ψ = I, giving m(m+1)/2 restrictions, and the exploratory factor loading

matrix for the block has all entries above the main diagonal, in the upper right hand

corner, fixed to 0, giving the remaining m(m−1)/2 identifying restrictions. This model

is referred to as the starting value model or the initial model or the unrotated model. It

is well known that such a model can be subsequently rotated into any other exploratory

factor model with m factors. The asymptotic distribution of all parameter estimates

in this starting value model is also obtained. Then for each exploratory block / simple

ESEM the variance covariance matrix implied for the dependent variable based only

on

ΛΛT + Θ (25)

and ignoring the remaining part of the model is computed. The correlation matrix

is also computed and using the delta method the asymptotic distribution of the cor-

relation matrix and the standardization factors are obtained. In addition, using the

delta method again the joint asymptotic distribution of the correlation matrix, stan-

dardization factors and all remaining parameter in the model is computed. A method

developed in Asparouhov and Muthén (2007) is then used to obtain the standardized

rotated solution based on the correlation matrix and its asymptotic distribution, see

Appendix C for a summary of this method. This method is also extended to provide

the asymptotic covariance of the standardized rotated solution, standardized unrotated
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solution, standardization factors and all other parameters in the model. This asymp-

totic covariance is then used to compute the asymptotic distribution of the optimal

rotation matrix H and all unrotated model parameters. The optimal rotation matrix

H is computed as follows

H = M−1
0 M∗

0 (26)

where M0 is a square matrix that consists of the first m rows of Λ0 and similarly M∗
0 is

a square matrix that consists of the first m rows of Λ∗
0. Finally all rotated parameters

and their asymptotic distribution is obtained using formulas (15-22) and the delta

method.

This estimation method is equivalent to the constrained maximum likelihood method

based on (7) or (9). The estimation of the starting value model may give non-

convergence. A random starting value procedure is implemented in Mplus for this

estimation. In addition a random starting value procedure is implemented in Mplus

for the rotation algorithms which are prone to multiple local minima problems.

CONSTRAINED ROTATION

Factor analysis is often concerned with invariance of measurements across different

populations such as defined by gender and ethnicity (see, e.g. Meredith, 1993). Studies

of measurement invariance and population differences in latent variable distributions is

commonplace through multiple-group analysis (Joreskog and Sorbom, 1979). A similar

situation occurs for longitudinal data where measurement invariance is postulated for a

factor model at each of the time points. Analysis of measurement invariance, however,

has been developed and used only with CFA measurement specifications. Although

related methods have been proposed in EFA settings, see Meredith (1964) and Cliff

(1966), they only attempt to rotate to similar factor patterns. The methods of this

paper introduce multiple-group exploratory factor analysis, and multiple-group analysis

of EFA measurement parts in structural equation modeling. This development makes

it possible for a researcher to not have to move from EFA to CFA when wanting to

study measurement invariance.
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This section describes ESEM models constraining the loadings to be equal across

two or more sets of EFA blocks. For example in multiple group analysis it is of interest

to evaluate a model where the loading matrices are constrained to be equal across

the different groups. This can easily be achieved in the ESEM framework by first

estimating an unrotated solution with all loadings constrained to be equal across the

groups. If the starting solutions in the rotation algorithm are the same, and no loading

standardizing is used, the optimal rotation matrix will be the same as well and in turn

the rotated solutions will also be the same. Thus obtaining a model with invariant

rotated Λ∗ amounts to simply estimating a model with invariant unrotated Λ and that

is a standard task in maximum likelihood estimation.3

When an oblique rotation is used an important modeling possibility is to have the

Ψ matrix also be invariant across the groups or alternatively to be varying across the

groups. These models are obtained as follows.4 To obtain varying Ψ across the groups

one simply estimates an unrotated solution with Ψ = I in the first group and an

unrestricted Ψ matrix in all other groups. Note that unrestricted here means that Ψ is

not a correlation matrix but the variances of the factors are also free to be estimated.

It is not possible in this framework to estimate a model where in the subsequent groups

the Ψ matrix is an unrestricted correlation matrix, because even if in the unrotated

solution the variances of the factors are constrained to be 1, in the rotated solution

they will not be 1. However, it is possible to estimate an unrestricted variance Ψ in

all but the first group and after the rotation the rotated Ψ will also be varying across

groups.

Similarly, when the rotated and unrotated loadings are invariant across groups one

can estimate two different models in regard to the factor intercept and the structural

regression coefficients. These coefficients can also be invariant or varying across groups

3Note again, however, that Mplus will automatically use RowStandardization=Covariance, so that differ-

ences across groups in the residual variances Θ do not cause differences in the rotated solutions, see Appendix

B.
4Using again RowStandardization=Covariance the estimated unrotated solution with equality of the

loadings across groups and all Ψ = I leads to rotated solution with equality in the rotated loadings as well

as in the Ψ matrix, see Appendix B.
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simply by estimating the invariant or group-varying unrotated model. Note that in

this framework only full invariance can be estimated, i.e., it is not possible to have

measurement invariance for one EFA factor but not for the other, if the two EFA

factors belong to the same EFA block. Similar restrictions apply to the factor variance

covariance, intercepts and regression coefficients. If the model contains both EFA

factors and CFA factors all of the usual possibilities for the CFA factors are available.

ROTATION CRITERIA

When the EFA specification is used in ESEM instead of CFA the choice of the rotation

procedure becomes important. This section considers the properties of some key ro-

tation criteria: Quartimin, Geomin, and the Target criteria. Further rotation criteria

are given in Appendix A.5

The choice of the rotation criterion is to some extent still an open research area.

Generally it is not known what loading matrix structures are preserved by each ro-

tation criterion. The simulation studies presented in this article, however, indicate

that the Geomin criterion is the most promising rotation criterion when little is known

about the true loading structure6. Geomin appears to be working very well for sim-

ple and moderately complicated loading matrix structures. However, it fails for more

complicated loading matrix structures involving 3 or more factors and variables with

complexity 3 and more, i.e., variables with 3 or more non-zero loadings. Some examples

are given in the simulation studies described below. For more complicated examples

the Target rotation criterion will lead to better results. Additional discussion on the

choice of the rotation criterion is presented later in this article.

Following are some general facts about rotation criteria. Let f be a rotation crite-

rion, Λ0 be the loading matrix and Ψ be the factor covariance. The oblique rotation

algorithm minimizes

f(Λ) = f(Λ0H
−1) (27)

over all matrices H such that diag(HΨHT ) = 1, while the orthogonal rotation algo-

rithm minimizes (27) over all orthogonal matrices H. The matrix Λ0 is called an f−
5All of these rotation criteria are implemented in Mplus.
6The Geomin rotation is now the default rotation criterion in Mplus.
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invariant loading structure if (27) is minimized at H = I, i.e., (27) is minimized at the

loading matrix Λ0 itself, regardless of the value of Ψ. The invariant structures pre-

sented here are the ones that attain the global unconstrained minimum for the rotation

criteria. Typically the global unconstrained rotation function minimum is 0. If Λ0 is

the true simple structure, rotations based on f will lead to Λ0 regardless of the starting

solution. There is a second requirement for this to happen, namely, Λ0 has to be the

unique minimum of f , up to a sign change in each factor and factor permutation. If it

is not, the rotation algorithm will have multiple solutions and generally speaking the

rotation algorithm may not be identified sufficiently.

A sufficient condition for rotation identification has been described in Howe (1955),

Joreskog (1979) and Mulaik and Millsap (2000). Consider a factor analysis model with

m factors. In general, m2 restrictions have to be imposed on the parameters in Λ and

Ψ for identification purposes. For oblique rotation m factor variances are fixed to 1

and therefore additional m(m− 1) constraints have to be imposed. It should be noted

that not all sets of m(m− 1) constraints will lead to identification. Consider the case

when the constraints are simply m(m−1) loading parameters fixed at 0. The following

two conditions are sufficient conditions for rotation identifiability.

(a) Each column of Λ has m− 1 entries specified as zeroes.

(b) Each submatrix Λs, s = 1, ...,m, of Λ composed of the rows of Λ that have fixed

zeros in the s−th column must have rank m− 1.

These conditions are sufficient for rotation identification purposes regardless of what

the value of the correlation matrix Ψ is. Conditions (a) and (b) can also be used

to establish identifiability of the rotation criteria. Rotation functions are generally

designed so that the optimally rotated loading matrix has many zero loadings. If these

zero loadings satisfy conditions (a) and (b) then the rotation method is sufficiently

identified. This approach will be used with the Geomin and the Target rotation method.

Identifiability of the rotated solution of an ESEM model can be broken into two
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parts. First, the unrotated solution has to be uniquely identified. Second, the optimal

rotation has to be uniquely identified. The conditions (a) and (b) above can only be

used to establish the identifiability of the optimal rotation, but they cannot be used to

establish identifiability of the unrotated solution, see Bollen and Joreskog (1985). The

implicit information matrix method can be used to establish identifiability for each

of the two parts. If the information matrix of the unrotated solution is not singular

then the unrotated solution is identified. If also the bordered information matrix, see

Appendix C, is not singular then the optimal rotation is also uniquely identified, and

therefore the ESEM model is uniquely identified as well.

In general one needs to know what structures are invariant under which rotation

criteria so that one can make a proper rotation criterion selection for the type of

structure that one is searching for. In the next three sections the Quartimin, Geomin

and Target rotation criteria and their invariant loading structures are described. Let

the loading matrix Λ be a matrix with dimensions p and m.

Quartimin

The rotation function for the Quartimin criterion is

f(Λ) =
p∑

i=1

m∑
j=1

m∑
l 6=j

λ2
ijλ

2
il. (28)

If each variable loads on only one factor, i.e., each row in Λ has only one non-zero

entry, then Λ is Quartimin invariant, and this rotation criterion will work perfectly

for recovering such a factor loading structure. Note that in this case the minimum

of the rotation function is the absolute minimal value of 0. Note also that this fact

is independent of the number of variables or the number of factors. Usually no other

rotation criteria can be as effective as Quartimin for these kind of simple loading

structures in terms of MSE of the parameters estimates. However, rotation criteria

such as Geomin will generally produce rotation results similar to Quartimin.

Geomin

The rotation function for the Geomin rotation criterion is

f(Λ) =
p∑

i=1

(
m∏

j=1

(λ2
ij + ε)

)1/m

(29)
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where ε is a small constant. The original purpose of this constant is to make the rotation

function differentiable when there are zero loadings, but by varying the constant one

can actually create different rotation criteria.

Note that if ε = 0 and one entry in each row is zero, the Geomin rotation function

is zero, i.e., the rotation function is already minimized and the minimization process

does not help in the identification of the remaining entries in the row. If however ε > 0

this problem is resolved to some extent. Note also that the Geomin rotation function is

simply the sum of the rotation functions for each of the rows, but the rotation function

for each row can not be minimized separately because the loading parameters are not

independent across rows. They can only vary according to an oblique or orthogonal

rotation. Thus even when ε = 0 and each row contains a zero the non-zero entries in

the row can be identified through the sufficient conditions (a) and (b).

The known Geomin invariant loading structures will now be described. Consider

first the case when the parameter ε is 0 (or a very small number such as 10−5). The

Geomin function is 0 for all Λ structures that have at least one 0 in each row, i.e.,

structures with at least one zero in each row are Geomin invariant. This is a very large

set of loading structures. However, in many cases there are more than one equivalent

Λ structure with at least one zero in each row. Suppose that p ≥ m(m− 1) for oblique

rotations (and p ≥ m(m − 1)/2 for orthogonal rotations) where p is the number of

dependent variables and m is the number of factors and that the sufficient conditions

(a) and (b) are satisfied. Then the Λ structure is unique and will therefore be completely

recovered by the Geomin criterion. Even in this case however, there could be multiple

solutions that reach the 0 rotation function value because a different set of 0 locations

can lead to a different rotated solution.

The Geomin rotation criterion is known to frequently produce multiple solutions,

i.e., multiple local minima with similar rotation function values. The role of the ε value

is to improve the shape of the rotation function, so that it is easier to minimize and

to reduce the number of local solutions. Models with more factors are more likely to

have more local solutions and are more difficult to minimize. Thus larger ε values are
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typically used for models with more factors7. Note however, that multiple solutions is

not a problem but rather an opportunity for the analysis, see Rozeboom (1992) and

the rotation choice section below.

Another reason to include a positive ε value in the Geomin rotation function is

the fact that if ε = 0 the rotation function is not differentiable. Differentiability is

important for convergence purposes as well as standard error estimation. For example,

if ε < 10−5 the convergence can be very slow and the prespecified maximum number

of iteration can be exceeded.

Target

Conceptually, target rotation can be said to lie in between the mechanical approach

of EFA rotation and the hypothesis-driven CFA model specification. In line with

CFA, target loading values are typically zeros representing substantively motivated

restrictions. Although the targets influence the final rotated solution, the targets are

not fixed values as in CFA, but zero targets can end up large if they do not provide

good fit. An overview with further references is given in Browne (2001), including

reference to early work by Tucker (1944).

The target rotation criterion is designed to find a rotated solution Λ∗ that is closest

to a prespecified matrix B. Not all entries in the matrix B need to be specified. For

identification purposes at least m − 1 entries have to be specified in each column for

oblique rotation and (m−1)/2 entries have to be specified in each column for orthogonal

rotation. The rotation function is

f(Λ) =
p∑

i=1

m∑
j=1

aij(λij − bij)2 (30)

where aij is either 1 if bij is specified and 0 if bij is not specified. The most common

specification choice for bij is 0. Specifying many of the target loadings as 0 can be

very useful and effective way to rotate the loading structure into a hypothesized simple

structure.
7The Mplus default for ε for 2 factors is 0.0001, for 3 factors is 0.001, and for 4 or more factors it is 0.01.
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The known Target invariant loading structures can be described as follows. If all

targets in the rotation function are correct then the Λ matrix minimizes the rotation

criteria. In addition, if at least m(m− 1) zero targets are specified that satisfy the suf-

ficient conditions (a) and (b)8 then the Λ matrix is the unique minimum and therefore

it is Target invariant.

For example, consider a 3-factor EFA model with 9 measurement variables. Data is

generated and estimated according to this model with the following parameter values.

The factor variance covariance Ψ is the identity matrix and the loading matrix Λ is as

follows 

1 (0) (0)

1 0 0

1 0 0

(0) 1 (0)

(0) 1 0

0 1 0

0 (0) 1

0 0 1

0 0 1



(31)

The residual variances of the dependent variables are 1. The simulation study is based

on 100 samples of size 1000. The data are analyzed using an EFA model with target

rotation where the targets are the entries in the parentheses in the above matrix

λ41 = λ51 = λ12 = λ72 = λ13 = λ43 = 0 (32)

Obviously condition (a) is satisfied. Consider now the submatrices Λs. Since the s-th

column of Λs by definition consists of all zeroes, that column will not contribute to

the rank of Λs and thus the s-th column can be removed for simplicity. In the above

example the submatrices are

Λ1 =

 λ42 λ43

λ52 λ53

 =

 1 0

1 0


8Mplus checks these conditions and if they fail Mplus will automatically suggest alternative targets.
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Λ2 =

 λ11 λ13

λ71 λ73

 =

 1 0

0 1



Λ3 =

 λ11 λ12

λ41 λ42

 =

 1 0

0 1


The ranks of these matrices are as follows: rank(Λ1) = 1, rank(Λ2) = 2, rank(Λ3) =

2. Thus the submatrix Λ1 does not satisfy the identifying condition (b) and it has to

be modified, i.e., the targets in column 1 have to be modified. This is confirmed in the

simulation. From the 100 samples, 13 samples recognized the model as a non-identified

model. For the remaining samples many of the parameters have large standard er-

ror estimates and generally all parameter estimates are biased. The average absolute

bias for all loading parameters is 0.511. The average standard error for the loading

parameters is 1.393. Such large standard errors indicate a poorly identified model.

The reason that the non-identification is not recognized in all samples is as follows.

While for the true parameter values rank(Λ1) = 1, for individual samples the rank(Λ̂1)

may actually be 2 because of variation in the data generation and thus 87 of the 100

samples were considered identified. However, that identification is very poor because

Λ̂1 is generally quite close to Λ1, i.e., it is nearly singular and has deficiency in the

rank.

Now consider an alternative target specification. Replace the target λ51 = 0 with

the target λ71 = 0. All other targets remain the same. The new submatrix Λ1 now is

Λ1 =

 λ42 λ43

λ72 λ73

 =

 1 0

0 1


which clearly has rank 2 and the model is now well identified. The results of the

simulation confirm this. The average absolute bias for the loading estimates is now

0.003, and the average standard error for the loading estimates is 0.039.

Note that conditions (a) and (b) are generally speaking only sufficient conditions

for identification. These conditions are strictly speaking not necessary. A necessary
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condition is the fact that there should be at least m(m− 1) targets, because that will

lead to the m(m−1) constraints needed for identification purposes. The above simula-

tion example, however, suggests that for practical purposes one could treat conditions

(a) and (b) also as necessary conditions.

For orthogonal rotations the identification requirements are similar, however, now

only (m − 1)/2 targets should be specified in each column, because the Ψ matrix has

m(m − 1)/2 additional constraints, beyond the m factor variances fixed at 1. If m is

even (m − 1)/2 is not an integer, so in that case the total number of targets has to

be at least m(m − 1)/2 while each column can contain a different number of targets.

Again, however, all submatrices Λs have to be of full rank.

AN EMPIRICAL EXAMPLE

An example will be analyzed to highlight both the EFA extensions and the SEM exten-

sions made possible with ESEM. The example concerns a teacher-rated measurement

instrument capturing aggressive-disruptive behavior among a sample of U.S. students

in Baltimore public schools (Ialongo, et al., 1999). A total of 248 girls and 261 boys

were observed in 27 classrooms over Grades 1-3. The instrument consists of 13 items

scored as 1 through 6 for the categories Almost Never to Almost Always. A first

analysis considers Grade 3 gender differences in the factors behind the 13 items, us-

ing multiple-group EFA to study measurement invariance and differences in factor

means, variances, and covariances. A second analysis studies antecedents of Grade 3

aggressive-disruptive behavior where the exploratory factors are related to covariates,

in this case Grade 1 factors for aggressive-disruptive behavior and a poverty index.

Several additional latent variable analysis features are illustrated which are new in

the context of an exploratory measurement structure. First, the items are treated as

continuous normal variables in the estimation, but due to the skewed distributions,

non-normality robust χ2 model testing and standard errors will be used9. Second, the

data are hierarchical with students nested within classrooms so that χ2 model testing

and standard errors that also take the cluster sample feature into account are used10

9This uses the Mplus MLR estimator
10This uses the Mplus Type = Complex feature
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(for an overview of these techniques, see Asparouhov and Muthén, 2005). An alterna-

tive modeling approach for this example which includes classroom level modeling and

not just cluster sampling adjustments is presented in Muthén and Asparouhov (2008).

Third, the analysis involves using Lagrangian multipliers (“modification indices”) to

search for sources of model misfit in the presence of non-normality and hierarchical

data.

These two examples have model features that have not been possible to accommo-

date until now. In the first example, a simultaneous EFA with factor loading rotation

is performed in several groups, testing different degrees of across-group invariance of

measurement and factor distribution parameter arrays. In the second example, an

SEM is formulated for a measurement model at two time points, testing EFA mea-

surement invariance across time and also allowing the estimation of rotated structural

regression coefficients. These new possibilities represent path-breaking additions to

EFA and SEM.

Multiple-group EFA of gender invariance

The design of the measurement instrument suggests that three factors related to

aggressive-disruptive behavior in the classroom can be expected: verbal aggression,

person aggression, and property aggression. Strong gender differences are expected.

Separate analyses of females and males find that a 3-factor exploratory structure fit

the data reasonably well. A two-group analysis of females and males with no equality

restrictions across groups combines these two analyses and results in χ2 = 145 with 84

degrees of freedom, non-normality scaling correction factor c = 1.416, CFI = 0.972,

and RMSEA = 0.053. Adding factor loading matrix invariance results in χ2 =

191 with 114 degrees of freedom, non-normality scaling correction factor c = 1.604,

CFI = 0.964, and RMSEA = 0.052. A χ2 difference test does not reject the added

loading invariance hypothesis at the 1% level, χ2 = 47 with 30 degrees of freedom

(p = 0.02)11. Adding measurement intercept invariance to the loading invariance

gives χ2 = 248 with 124 degrees of freedom, non-normality scaling correction factor

11The χ2 difference testing using MLR is done as shown at www.statmodel.com/chidiff.shtml
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c = 1.517, CFI = 0.942, and RMSEA = 0.063. A χ2 difference test clearly rejects

the added intercept invariance hypothesis, χ2 = 133 with 10 degrees of freedom. The

modification indices for the model with intercept invariance point to especially strong

non-invariance for the item breaks rules, with MI = 18. The expected parameter

change value for this parameter indicates that males have a significantly higher inter-

cept, that is, a higher expected score given the factor value. Letting the intercept for

breaks rules be different across gender while testing for gender invariance of the factor

covariance matrix leads to a strong rejection by the χ2 difference test, χ2 = 191 with

6 degrees of freedom. The Geomin-rotated solution for the model with invariant load-

ings, invariant intercepts except for break rules, and non-invariant factor covariance

matrix is presented in Table 1. Here the ε value for the Geomin criterion is ε = 0.001.

Table 1 shows that the factor loadings give a clear interpretation of the factors in

terms of verbal-, person-, and property-related aggressive-disruptive behavior. Bolded

entries are significant on the 5% level. Note that the loading estimates are not in the

usual EFA metric, but correspond to items that are not standardized to unit variance

and where the variances vary across items. For males the factors are also not stan-

dardized to unit variances12. Several items have significant cross loadings indicating

that a simple structure CFA is not suitable. In terms of the factor distributions, males

have significantly higher means on all factors and are also more heterogeneous on all

factors except verbal. It is interesting to note that much of the attention in factor

analytic group comparisons is focused on factor loading similarity, with less or no at-

tention paid to the measurement intercepts. With invariant loadings, scores consisting

of sums of items with large loadings are often used as proxies for the factors. If the

intercepts are not invariant, however, the use of such scores gives a distorted view of

group differences. This distortion is avoided in the present analysis focusing on factor

mean differences under partial measurement invariance.

Multiple-group SEM with a time-invariant EFA measurement structure

In this section, the previous 2-group, 3-factor EFA model is expanded into a 2-group
12Mplus also provides a standardized solution. This results in different loadings across groups due to

different group variances for items and factors
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SEM by regressing the Grade 3 factors on the corresponding Grade 1 factors. A

covariate lunch is also added that predict the three factors at both time points, where

lunch is a dichotomous student family poverty index (free lunch recipient). Adding

to the Grade 3 measurement model for females and males, measurement invariance

is specified with respect to the factor loadings across the two grades. For simplicity,

across-grade invariance is not specified for the measurement intercepts, and the study of

factor mean differences across grade is not considered here. Factor covariance matrices

are allowed to vary across the grades. This model results in χ2 = 998 with 637 degrees

of freedom, non-normality scaling correction factor c = 1.382, CFI = 0.945, and

RMSEA = 0.041. A χ2 difference test of across-grade loading invariance does not

show a strong indication of factor loading non-invariance, resulting in χ2 = 49 with

29 degrees of freedom and p = 0.01. Geomin rotation gives a factor loading pattern

similar to that of the 2-group EFA for Grade 3 in Table 1.

Interesting gender differences emerge in the factor relationships across grades. For

females the three Grade 1 factors do not significantly predict the three Grade 3 fac-

tors, but for males the verbal- and person-related factors have significant and positive

relations over the grades. For females, the lunch poverty index has no significant effect

on the factors at either grade, whereas for males lunch has a significant positive effect

on the verbal and person factors in Grade 1.

In this framework it is not possible to regress only one of the exploratory factors on

the poverty index variable. All three factors have to be regressed on that variable. This

is necessary because even if only one factor is regressed on the poverty index variable

after the rotation all three rotated factors will have non-zero regression coefficients.

Similarly, each of the Grade 3 factors has to be regressed on each of the Grade 1

factors rather than only on its corresponding factor. Note also that in this example

the regression coefficients of the Grade 3 factors on the Grade 1 factors are subject to

rotation twice, see formula (20), once to rotate the Grade 1 factors and a second time

to rotate the Grade 3 factors.

SIMULATION STUDIES

A series of simulation studies will now be presented to illustrate the performance of

26



the ESEM analysis. General considerations of the use of simulation studies with EFA

and ESEM are presented in Appendix D. The simulation studies are conducted with

Mplus 5.1. The Mplus input for the first simulation is given in Appendix E 13.

Small Cross Loadings

One of the advantages of ESEM modeling is that small cross loadings do not need to be

eliminated from the model. Given the lack of standard errors for the rotated solution

in most EFA software, common EFA modeling practice is to ignore all loadings below

a certain threshold value such as 0.3 on a standardized scale, see Cudeck and O’Dell

(1994). In subsequent CFA analysis such loadings are typically fixed to 0, see e.g.

van Prooijen and van der Kloot (2001). Small model misspecifications such as these,

however, can have a relatively large impact on the rest of the model.

In the following simulation study data are generated according to a 2-factor model

with 10 indicator variables Yj and one covariate X. Denote the two factors by η1 and

η2. The model is specified by the following two equations

Y = ν + Λη + ε (33)

η = B X + ζ (34)

where ε is a zero mean normally distributed residuals with covariance matrix Θ and ζ

are zero mean normally distributed residuals with covariance matrix Ψ. The following

parameter values are used to generate the data. The intercept parameter ν = 0, the

residual covariance Θ is a diagonal matrix with the value 0.36 on the diagonal. The

13A tutorial on Mplus simulation studies with ESEM is available in Mplus 5.1 Examples Addendum avail-

able at www.statmodel.com/ugexcerpts.shtml. In addition, all Mplus input and outputs for the simulation

studies presented in this article are available by email from the second author: bmuthen@ucla.edu.
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loading matrix Λ is

Λ =



0.8 0

0.8 0

0.8 0

0.8 0.25

0.8 0.25

0 0.8

0 0.8

0 0.8

0 0.8

0 0.8



(35)

The values λ42 = λ52 = 0.25 represent the small cross loadings. The true value for Ψ

is

Ψ =

 1 0.5

0.5 1


The true values for the regression slopes are

B =

 0.5

1

 .
The covariate X has a standard normal distribution. The simulation study uses 100

samples of size 1000. The samples are then analyzed by ESEM based on Geomin

rotation with ε = 0.0001, ESEM based on Geomin rotation with ε = 0.01, ESEM

based on Quartimin rotation, as well as by the CFA-SEM model where the two cross

loadings λ42 and λ52 are held fixed to 0. All methods produced unbiased estimates for

ν and Θ parameters. The results for the remaining parameters are presented in Tables

2 and 3.

It is clear from these results that the consequences of eliminating small cross load-

ings in the SEM analysis can result in substantial bias in the rest of the parameters

estimates as well as poor confidence interval coverage. Among the three ESEM meth-

ods the best results were obtained by the Geomin method with ε = 0.0001. The

Quartimin method and Geomin with ε = 0.01 showed some small biases which leads to
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poor confidence interval coverage. In contrast, ESEM based on Geomin rotation with

ε = 0.0001 produces results with little bias for all parameters and coverage near the

nominal 95% level. A simulation study based on samples with only 100 observations

reveals very similar results to the ones presented in Tables 2 and 3, i.e., these results

appear to be independent of the sample size.

The chi-square test of fit for the model is also affected by the elimination of small

cross loadings. Using a simulation with 500 samples of size 1000 the SEM model is

rejected 100% of the time while the ESEM model is rejected only 7% of the time. For

sample size of 100 the rejection rate for the SEM model is 50% and for the ESEM

model it is 10%. These results show that small, inconsequential cross loadings can lead

to a correct chi-square rejection of an otherwise well constructed SEM model. Using

approximate fit measures for the SEM model, such as CFI/TLI, RMSEA, and SRMR,

one can avoid this rejection problem to a substantial degree. Using samples of size

1000 and the RMSEA measure with cutoff value of 0.06 the model is rejected only 50%

of the time. Using the SRMR measure with cutoff value of 0.08 the model is never

rejected.

The simulation study presented here is not as easy to interpret as traditional sim-

ulation studies especially when it comes to comparing different rotation methods. To

provide proper interpretation of the results one has to first accept the notion that the

loading matrix presented in (35) is the simplest possible loading matrix among all ro-

tated versions of that matrix. In particular one has to accept the notion that Λ given

in (35) is simpler than rotations of Λ that have no zero loading values. If this simplicity

notion is accepted then the simulation study can be interpreted in the traditional sense,

i.e, the matrix Λ given in (35) is the true loading matrix that has to be estimated by

the rotated loading matrix Λ̂. Now suppose that, for some reason, an analyst decides

that another rotated version of Λ is simpler than the one given in (35). In that case,

the above simulation study would be irrelevant and a different rotation criterion, that

targets the alternative rotated version of Λ, would have to be explored.

To illustrate the above point, consider the rotation results on the population level.

Using the rotation algorithms with the true population parameters Λ, Ψ and Θ one
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can obtain the optimal rotations on the population level14. Denote the Λ rotations

obtained by Quartimin, Geomin with ε = 0.01, and Geomin with ε = 0.0001 by Λq,

Λ0.01, and Λ0.0001, respectively. Denote the corresponding Ψ rotations by Ψq, Ψ0.01, and

Ψ0.0001, respectively15. These matrices are presented in Table 4 and 5. Finite sample

based rotated parameter estimates are essentially consistent estimates of the rotated

population values presented in Table 4 and 5. All four of these rotated solutions are

equivalent in terms of model fit because the matrices are rotations of each other. To

decide which rotation is optimal one has to consider the notion of simplicity. Which

of the four Λ matrices should be considered the simplest and the most interpretable?

Regardless of the arguments and notion of simplicity in this example, one inevitably

reaches the conclusion that the matrix Λ is the simplest. Therefore in the estimation

process this matrix should be considered the desired matrix. It is clear that Λ0.0001

is the closest to Λ and that is the reason why the Geomin rotation with ε = 0.0001

produced the best results in the simulation study. If however for some reason one

decides that Λq is the simplest possible matrix, then obviously the Quartimin rotation

would be the optimal rotation method to use. A realistic example where two different

loading matrices are quite likely to be considered as the simplest and most interpretable

is described later in this article.

Chi-Square test of fit and likelihood ratio testing

Testing various aspects of ESEM can be done the same way as for regular SEM mod-

els. The standard chi-square test of fit which compares a structural model against an

unrestricted mean and variance model can be done for ESEM the same way, i.e., using

the likelihood ratio test (LRT) for the two models. For example, consider the question

of how many factors are needed in the ESEM model. One standard approach is to

sequentially fit models with 1, 2, ... etc. factors and then use the smallest number

14Note that Θ also influences the rotation through the correlation standardization.
15In Mplus the population level rotations are obtained by generating a large sample, such as a sample

with 1,000,000 observations. In such a large sample the estimated parameters are nearly identical with the

population parameters.
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of factors for which the test of fit does not reject the model. Consider the simula-

tion example described in the previous section. Estimating the model with one factor

leads to an average chi-square test of fit of 1908 with 44 degrees of freedom and 100%

rejection rate, i.e., the LRT testing correctly identifies the 1-factor ESEM model as

insufficient. In contrast, for the 2-factor ESEM model the average chi-square test of

fit is 35 and with 34 degrees of freedom the rejection rate dropped to 9%, i.e., the

LRT correctly finds the 2-factor ESEM model well fitting. It is possible to estimate

even a 3-factor ESEM model, although convergence problems occur in 30 out of the

100 replications. The average chi-square test of fit for the 3-factor ESEM model is 20

and with 25 degrees of freedom this leads to 0% rejection rate. The underestimation

of the chi-square test statistic and type I error in this case is due to overfactoring, see

Hayashi et al. (2007).

Alternatively, the LRT can be used to test directly an m − 1-factor ESEM model

against an m- factor ESEM model, without testing the models against the unrestricted

mean and variance models. In the above example, testing the 1-factor model against

the 2-factor model gives an average chi-square test statistic of 1873 and with 8 degrees

of freedom this leads to 100% rejection rate. In certain cases such direct testing can

be preferable as it directly tests the hypothesis of interest, namely, whether or not the

additional factor is needed. The direct test will also be more powerful than the general

test of fit model, i.e., it will outperform the test of fit approach in small sample size

problems. Note however that testing m− 1 factors against m factors is susceptible to

overfactoring and inflated type I error, see Hayashi et al. (2007).

In practice however not all of the residual correlation will be picked up by the

unrestricted loading structure of the ESEM model and strictly using the chi-square

test of fit will often lead to an unreasonable number of factors in the model, many of

which contribute little to the overall model fit. In such cases one can use approximate

fit indices such as SRMR, CFI and TLI to evaluate the fit of the model. One can also

use the SRMR index to evaluate the improvement in the fit due to each additional

factor. For example, if an additional factor contributes less than 0.001 decrease in the

SRMR, it seems unreasonable to include such factors in the model. Instead one can use
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the new ESEM modeling feature, extending the standard EFA analysis, by including

residual covariance parameters in the model in addition to the exploratory factors.

Furthermore it is possible to point out which residual covariances should be included

in the model, and thereby improve factor stability and overall fit, by using standard

modeling tools such as modification indices, standardized and normalized residuals.

The LRT test can be used also to test an EFA model against a CFA model. Consider

again the simulation example described in the previous section and the LRT test of that

model against the CFA model based on all non-zero loadings, i.e., including the two

small cross loadings. Note first that the two models are nested. This is not very easy

to see because of the parameter constraints imposed on the ESEM parameters by the

rotation algorithm. There are 8 loading parameters that are fixed at 0 in the CFA-SEM

but not in the ESEM. However, the ESEM model has 2 parameter constraints, imposed

by the rotation algorithm, that involve all loading and factor covariance parameters.

To see that the CFA model is nested within the ESEM model first note that the ESEM

model is equivalent to its starting unrotated solution. The rotated solution has the

same log-likelihood value as the unrotated starting value solution, and any testing of

a model against an ESEM model is essentially a test against the unrotated starting

value model. A number of different unrotated solutions can be used at this point. Two

of these are generally convenient in assessing the model nesting. The first one is the

orthogonal starting value where the factor variance covariance matrix is the identity

matrix and the loadings above the main diagonal in the upper right hand corner are

all fixed to 0. The second unrotated starting value solution that can be used is the

oblique starting value where the factor variances are fixed to 1, the factor covariances

are free and each loading column contains exactly m−1 zeroes in locations that satisfy

the sufficient condition (b). For example, a square submatrix of size m, can be selected

from the loading matrix and in this submatrix all values except the main diagonal

entries can be fixed to 0. In the above example one can use the oblique starting value

solution to assert the nesting of the CFA and ESEM models. The ESEM model is

equivalent to an unrotated oblique starting value solution with any 2 loadings from

different rows fixed to 0. It is now clear that the CFA model can be thought of as
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more constrained than the ESEM model where the additional constraints simply fix

the remaining 6 loadings at 0.

Conducting the LRT test between the ESEM and CFA models for the simulation

example described in the previous section, using 100 samples of size 5000, the average

test statistic is 5.73 and with 6 degrees of freedom that leads to a rejection rate of only

2%, i.e., the LRT correctly concludes that the CFA model with all 8 loadings fixed to

0 is well fitting.

Now consider the situation when both nested models are approximately fitting

models, i.e., the models have small misspecifications but the sample size is large enough

that even small misspecifications lead to poor tests of fit. For example, if the data

generation in the previous section is altered by adding a residual covariance between

Y7 and Y8 of 0.05, using a sample size of 5000, both the ESEM and CFA models are

rejected by the test of fit 100% of the time with average chi-squares test of fit statistics of

88 and 97 respectively. The average SRMR measures are 0.004 and 0.005 respectively,

i.e., both models are fitting approximately in all 100 replications. Conducting the

LRT between the CFA and ESEM models provides relatively good results here as well.

The average LRT test statistic for testing the CFA model against the ESEM model is

8.65 and with 6 degrees of freedom, this leads to a 14% rejection rate. This suggests

that even when the models are fitting the data only approximately, the LRT can be

used to distinguish between ESEM and CFA models. The relatively small inflation

in the rejection rate is due to the fact that the more flexible ESEM model is able to

accommodate more of the model misspecifications than the CFA model. The inflation

however is relatively small and the LRT can clearly be recommended. Even though

both the ESEM and CFA models are incorrect in this simulation, the LRT correctly

concludes that the 8 loadings are indeed 0.

Multiple Group ESEM

This section describes a multiple group example and demonstrates the constrained

rotation technique described earlier for group invariant loading matrices. Consider a
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two- group two-factor model with 10 dependent variables

Y = νg + Λgη + ε (36)

η = αg + ζ (37)

where ε and ζ are zero mean residuals with covariance matrices Θg and Ψg. One

common application of multiple group analysis is to test measurement invariance across

the groups, that is to test the hypothesis Λ1 = Λ2, see Joreskog and Sorbom (1979).

Estimating the measurement invariance model is of interest as well. This simulation

study evaluates the performance of the ESEM modeling technique for the measurement

invariance model. Data is generated using the following parameter values ν1 = ν2 = 1,

α1 = 0, α2 = (0.5, 0.8), Θ1 is a diagonal matrix with all diagonal values 1, Θ2 is a

diagonal matrix with all diagonal values 2,

Λ1 = Λ2 =



0.8 0

0.8 0

0.8 0

0.8 0

0.8 0

0 0.8

0 0.8

0 0.8

0 0.8

0 0.8



Ψ1 =

 1 0.5

0.5 1



Ψ2 =

 1.5 1

1 2

 .
The simulation study is conducted for samples with 100 observations in each group as

well as samples with 500 observations in each group. The simulation study is based

on 100 samples for each of the two sample size specifications. For each of the samples
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the ESEM model is estimated with the following constraints. The loadings and the

intercepts are held equal across the two groups

Λ1 = Λ2 (38)

ν1 = ν2. (39)

In the first group the factor variances are fixed to 1 and the factor means are fixed to

0

ψ111 = ψ221 = 1 (40)

α1 = 0. (41)

In addition, Θ1 and Θ2 are estimated as diagonal matrices, α2 is estimated as a free

vector, Ψ2 is estimated as unrestricted variance matrix, while Ψ1 is estimated as unre-

stricted correlation matrix. This model specification is a typical measurement invari-

ance model. Other sets of identifying restrictions can be similarly specified. The model

described above has a total of 54 independent parameters, 10 ν parameters, 10 Θ1 pa-

rameters, 10 Θ2 parameters, 20 Λ parameters, 3 Ψ2 parameters, 2 α2 parameters and

ψ121, minus the two parameter restrictions imposed on Ψ and Λ by the rotation algo-

rithm. The ESEM model is estimated with the Geomin rotation and ε = 0.0001. The

average estimate for some of the parameters in the model and their confidence interval

coverage are reported in Table 6. For sample size 500, all parameter estimates have

negligible bias and the coverage is near the nominal 95% level. For sample size 100,

the coverage is near the nominal 95% level, however, some of the parameter estimates

show substantial bias, namely, the factor covariance parameter in both groups.

The results in Table 6 indicate that the small sample size properties of the ESEM

models may be somewhat inferior to those of the traditional SEM. To investigate the

small sample size parameter biases in the above simulation study the samples with 100

observations in each group are analyzed by the following three methods: the ESEM

method with Geomin rotation and ε = 0.0001, the ESEM method with Target rotation

using all 0 loadings as targets, and the SEM with all 0 loadings fixed to 0. In practice

both the ESEM-Target method and the SEM method can be used as a follow up model
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to the ESEM-Geomin method. Based on the ESEM-Geomin method, the ESEM-Target

model is constructed by setting all loadings that are not significantly different from 0

as targets. Similarly, the SEM model is constructed by setting all loadings that are

not significantly different from 0 as loadings that are fixed to 0. Note that while

the parameter estimates for ESEM-Geomin show some small sample size bias for some

parameters, the standard errors produced correct coverage for all parameters, i.e., when

evaluating the significance of small loadings for purposes of constructing ESEM-Target

model and the SEM model the ESEM-Geomin model will point out correctly all zero

loadings.

The results of this simulation study are presented in Table 7, which contains the

average parameter estimates and the mean squared error (MSE) for the parameter es-

timates. Small sample size results should be interpreted very cautiously. Usually there

is no theoretical justification for preferring one method over another for small sample

size and usually simulation studies are used to draw general conclusions. However,

there is no guarantee that the results in one simulation study would be similar to the

results of the same simulation study with different parameters and even in the same

simulation study the results can be inconsistent. For example, in this simulation the

covariance in the first group is best estimated by the SEM model, while the covariance

in the second group is best estimated by the ESEM-Target model. Nevertheless, Table

7 seems to give general guidance for reducing small sample size biases. It appears that

the additional information that ESEM-Target and SEM facilitate, namely that some

loadings are small or even 0, does result in a reduction of the small sample size biases

and the MSE of the parameter estimates. In addition, the SEM model does appear to

have slightly smaller biases overall than the ESEM-Target method although this does

not appear to be a consistent trend and for some parameters ESEM-Target produces

better results. For many of the parameters the three methods produce nearly identical

results. The SEM model has fewer number of parameters overall and thus can be ex-

pected in general to produce somewhat smaller biases and smaller MSE. Conducting

this simulation for a sample size of 500 does not lead to any substantial difference be-

tween the three methods. Thus the differences presented in Table 7 are likely to occur

36



only in small samples.

In addition, the usual chi-square test of fit which compares the estimated ESEM

model against the unrestricted mean and variance two-group model can be used to

evaluate the fit of the model. In this simulation study the model has 76 degrees of

freedom. For a sample size of 100, the average test of fit statistic is 78.25 with a

rejection rate at 5%. For a sample size of 500, the average test of fit statistic is 76.05

with a rejection rate at 5%. This shows that the chi-square test of fit works well for

the ESEM models.

General factor

In certain EFA applications there is one main factor on which all items load. In

addition, there can be other factors that are specific to the different items. This

structure is also referred to as a bi-factor solution in the classic factor analysis text

of Harman (1976). For example, consider a 3-factor model with 10 items with the

following loading matrix

Λ =



1 0 0

1 0 0

1 0 0

1 0.5 0

1 0.5 0

1 0.5 0

1 0.5 0

1 0 0.5

1 0 0.5

1 0 0.5



. (42)

If one considers oblique rotations, there is a rotation of the above matrix that will have
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just one non-zero entry in each row

Λ =



1 0 0

1 0 0

1 0 0

0 1.12 0

0 1.12 0

0 1.12 0

0 1.12 0

0 0 1.12

0 0 1.12

0 0 1.12



(43)

Ψ =


1 0.89 0.89

0.89 1 0.80

0.89 0.80 1

 (44)

Thus rotation criteria such as Quartimin that converge to complexity 1 solutions will

not be able to recover the general factor structure (42). Geomin with ε = 0 has two

different optimal solutions, namely (42) and (43), both leading to a rotation function

value of 0. For very small positive values of ε one can expect this to remain so.

However, as ε increases, the rotation function can change sufficiently so that some

of these multiple solutions are no longer local solutions. As ε increases the rotation

function value for (43) will be lower because it has 2 zeroes in each row, i.e., the loadings

matrix (43) will be the global minimum and (42) will be at best a local solution. In

fact it is not clear whether (42) will represent a local solution at all. Even with

ε = 10−4 using 30 random starting values, the GPA algorithm converged to solution

(43) in all 30 replications. In general it is not easy to force a minimization algorithm

to find local solutions, because minimization algorithms are designed to find global

solutions. The rotation function value for (43) is 0.027 while for (42) it is 0.214, i.e.,

the two solutions are of different magnitude. If ε is chosen to be a smaller value, such

as 10−6, the rotation function values are closer, however, the convergence process is
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substantially more difficult. Many more replications are needed for convergence and the

convergence criteria have to be relaxed as well. Using ε = 10−6 again most replications

converge to solution (43), but another local solution is found that is different from

both (42) and (43). In addition, in a simulation study, even if the GPA algorithm

is able to find consistently a particular local solution in all samples it is difficult to

implement constraints that will always recognize that particular local solution so that

when the results of the simulation are accumulated the same local solution is used.

This investigation shows that relying on local Geomin solutions may not work well

and that from practical perspective the loading matrix (42) should not be considered

Geomin invariant.

For orthogonal rotations, however, the loading matrix (42) is Geomin invariant.

This is demonstrated in the following simulation study that compares Geomin with

ε = 0.001 with another popular rotation method, Varimax. The simulation study is

based on 100 samples of size 5000. The data is generated according to the above

model and using the loading matrix (42). The intercept parameters ν = 0, the residual

variance for the indicator variables is 1, and the factor covariance matrix Ψ is the

identity matrix. The results of the simulation study are presented in Table 8 for a

representative set of parameters. The Geomin method produces unbiased parameter

estimates with good confidence interval coverage. In contrast, the Varimax method

produces biased parameter estimates and poor confidence interval coverage.

The Geomin method, however, has two solutions. The first solution is given in (42)

39



and has rotation function values 0.28. The second solution

Λ =



0.94 0.33 0

0.94 0.33 0

0.94 0.33 0

1.06 0 0.35

1.06 0 0.35

1.06 0 0.35

1.06 0 0.35

1.06 0 −0.35

1.06 0 −0.35

1.06 0 −0.35



(45)

has rotation function value 0.30. Using random starting values and the population

parameters, the GPA algorithm converged to the global minimum of 0.28 about half

of the time and the other half it converged to the local minimum of 0.30. When the

sample size is sufficiently large, such as the 5000 used in this simulation, there will

be two solutions, but they will consistently appear in the same order, i.e., the global

minimum in all finite sample size replications will correspond to the global minimum

solution in the population model. Thus an algorithm that always selects the global

minimum, will essentially always select the same solution. If however, the sample size

is smaller, the global and the local solutions will switch orders across the replications,

and thus an algorithm that always selects the global minimum will essentially average

the two different solutions and thus will render useless results16. A more advanced

algorithm that includes a method for picking the same local solution would avoid that

problem. This issue is important only in simulation studies. In single replication

studies such as real data analysis, one has to simply evaluate all local solutions and

choose the one that is simplest and easiest to interpret.

When a general factor model is anticipated and oblique rotation is used, the Target

rotation method may be a better alternative. The next section illustrates the Target

rotation with a complex loading structure.

16Future version of Mplus will include tools for resolving this problem.
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Complexity 3

In this section the advantages of the Target rotation are demonstrated with a complex-

ity 3 example, i.e., an example with 3 non-zero loadings in a row. The three methods

compared in this section are the Target rotation, the Geomin rotation with ε = 0.01,

and the Geomin rotation with ε = 0.0001. Consider a 4-factor 12-indicator factor anal-

ysis model with the intercept parameter ν = 0, the covariance matrices Ψ and Θ as

the identity matrices, and Λ as follows

Λ =



1 (0) (0) (0)

1 0 0 0

1 0.5 0 0

(0) 1 (0) (0)

0 1 0.5 0

0 1 0 0

(0) (0) 1 (0)

0 0 1 0

0 0 1 0

0 0.5 0.5 1

(0) (0) (0) 1

0 0 0 1



. (46)

The complexity of Y10 is 3. The entries in the parentheses represent the targets for the

Target rotation. One easy way to select targets and avoid any identification problems

is to identify pure factor indicators, i.e., identify one variable for each factor that loads

only on that variable just like in this example. The rank condition is then automatically

satisfied. When each factor has a pure indicator one can set all zero loadings for the

pure indicators as targets and the loading matrix is then Target invariant, i.e, the

estimates are asymptotically unbiased under the Target rotation. Tables 9 and 10

contain the results of the simulation study based on the above model and conducted

over 100 samples of size 5000. A representative set of loadings parameters is presented

in the tables. Both Geomin-based estimations produced biased estimates. The bias of
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the estimates based on Geomin with ε = 0.01 is smaller. The coverage of the Geomin-

based estimation is also quite poor. In contrast, the Target rotation shows negligible

bias and coverage near the 95% nominal level.

One can investigate the source of the Geomin bias by conducting the rotation on the

population values and investigating all local solutions. Using ε = 0.0001 Geomin has

more than 5 local solutions that have similar rotation function values. One of these

solutions corresponds to (46). Thus the simulation study presented here somewhat

unfairly evaluates Geomin. If the algorithm included evaluation of the different local

Geomin solutions and included a constraint to make the additional selection among

these solutions so that the solution corresponding to (46) is always selected, there

would be no bias. The bias in the simulation study is caused by the fact that the

average estimates really represent the average estimates among a mixed sets of local

Geomin solutions, instead of the same solution. In real data examples this is essentially

a non-existent problem because one simply has to consider the various Geomin local

solutions.

CHOOSING THE RIGHT ROTATION CRITERION

In most ESEM applications the choice of the rotation criterion will have little or no

effect on the rotated parameter estimates. In some applications, however, the choice of

the rotation criterion will be critical and in such situations one has to make a choice.

This section describes the underlying principles that one can follow to make that choice.

Choosing the right rotation is essentially a post estimation decision and there is no

right or wrong rotation. The goal of the rotation algorithms is to select the simplest

and most interpretable loading structure. It is ultimately the analyst’s choice and

perception of what the simplest and most interpretable loading structure is. It is the

analyst’s choice of what the rotation criterion should be and which of the multiple

rotated solutions represents the best loading structure for that particular application.

Understanding the properties of the different rotation criteria will help the analyst in

exploring the various rotation criteria. In particular, understanding the type of loading

structures that each of the rotation criteria can reproduce, i.e., the invariant loading

structures, is essential.
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Estimation methods based on fit function optimizations such as the maximum-

likelihood and least squares estimation methods would only accept the global optimum

as the proper solution and local optima are perceived as estimation problems that have

to be resolved so that the global optimum is always obtained. This is not the case,

however, when it comes to local minima for the rotation criteria. Understanding and

exploring the ability of rotation criteria such as Geomin to produce multiple optimal

solutions can help the analyst in finding the best loading structure. It will generally

be useful to consider the alternative top 2 or 3 Geomin solutions when such solutions

are available17. Similarly changing the ε value in Geomin is equivalent to changing the

rotation criterion. There is no correct or incorrect ε value. Different values for this

parameter produce different rotation criteria that can enable the analyst to fine tune

the loading matrix. In fact it is important that the analyst explores the sensitivity

of the Geomin solution with respect to the ε value. In particular ε values such as

ε = 10−2, 10−3, 10−4 should always be used.

To summarize, there is no statistical reason to prefer one rotation criterion over

another, one ε value over another, or one local minimum over another. It is entirely

in the hands of the analyst to make the choice and interpret the results. It is not the

data that decides what a simple loading structure is, it is not the estimator, and it is

not the rotation method. The analyst alone has to decide that. While for many simple

loading structures, such as (31), most analysts will agree that no alternative rotation

of Λ is simpler and more interpretable, that is not the case for other loading structures

such as (42) and (43). For more complicated loading structures analysts can disagree

on what the simplest loading structure is, even when the same rotation criterion is

used and different local minima are selected. There is no statistical tool to resolve such

disagreement and multiple equally valid solutions can be used.

17Mplus will automatically run 30 random starting values with the Geomin rotation. More random starting

values can be requested using the rstarts= command. In addition the different rotation values are presented

in regular EFA analysis, as well as the loading structures for the different local minima. The ESEM output

in Mplus 5.1 presents only the Geomin solution with lowest rotation function value.
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DISCUSSION

This paper has presented a new approach to structural equation modeling (SEM) which

extends the types of measurement models that can be used. Adding the possibility of an

exploratory factor analysis (EFA) measurement specification, strict loading restrictions

in line with confirmatory factor analysis (CFA) are not necessary. The resulting ESEM

approach has the full generality of regular SEM. From an EFA perspective, this implies

that EFA can be performed while allowing correlated residuals, covariates including

direct effects on the factor indicators, longitudinal EFA with across-time invariance

testing, and multiple-group EFA with across-group invariance testing. Several factor

loading rotation methods are available, including Geomin and Target rotation.

The main advantage of the ESEM model over existing modeling practices is that

ESEM incorporates seamlessly the EFA and SEM models. In most applications with

multiple factors the EFA analysis is used to discover and formulate factors. Usually

the EFA analysis is followed by an ad-hoc procedure that mimics the EFA factor def-

initions in a SEM model with a CFA measurement specification. The ESEM model

accomplishes this task in a one step approach and thus it is a simpler approach. In ad-

dition, the ESEM approach is more accurate because it avoids potential pitfalls due to

the challenging EFA to CFA conversion. For example, EFA-based CFA model may lead

to poor fit when covariates are added to the model. The ESEM approach avoids this

problem by estimating the measurement and structural model parts simultaneously.

Many CFA approaches draw on EFA to formulate a simple structure loading specifi-

cation. The EFA is typically carried out without obtaining standard errors and instead

rules of thumb such as ignoring loadings less than 0.3 are used. A CFA based on such

an EFA often leads to a misspecified model using chi-square testing of model fit. Model

modification searches may not lead to the correct model and fit indices such as CFA

may show sufficiently high values for the model not to be rejected. The paper illus-

trates the possible distortion of estimates that such a CFA-SEM approach can lead to

and shows how ESEM avoids the misestimation.

In many modeling applications SEM is used effectively to test substantive theory

that is built from considerations unrelated to the data. In such situations the ESEM
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framework offers an alternative rather than a replacement. If there is a good prior

theory then SEM is a valid and simpler approach. However, in real-data examples,

especially examples with many measurements and factors, it would be impossible to get

the correct loading pattern simply by theoretical considerations. Consider the empirical

example discussed earlier. More than half of the measurements presented in Table 1

are of complexity 2. It would be difficult to contemplate this model simply by using

substantive theory. A simpler SEM model would provide for a simpler interpretation

but would lead to one of three inferior modeling approaches. The first one would ignore

the needed cross loadings, which in turn would lead to biased estimates. The second

approach would reject the simple SEM model in favor of a more complicated and more

difficult to interpret SEM model perhaps with more factors. The third approach would

adjust gradually the initial theoretical model using data driven results, such as residuals

or modification indices. This third approach however is inferior to the ESEM approach

because it is essentially an ad-hoc exploratory procedure that resembles manual factor

rotation. ESEM provides a theoretically sound alternative based on well established

optimality driven rotation criteria.

The ESEM framework can also be used to challenge the conventional wisdom that

complexity 1 measurements are important to substantive researchers. One can argue

that it is more important to find an accurate set of measurements rather than to find

a pure set of measurements. Consider for example a simple MIMIC model. One can

use an ESEM model to test this theoretical model without worrying about correctly

specifying the CFA measurement structure.

ESEM makes possible better model testing sequences. Starting with an EFA mea-

surement specification of only the number of factors, CFA restrictions can be added to

the measurement model. Chi-square difference testing can be carried out to study the

appropriateness of the CFA restrictions. Previously such testing sequences have been

available only outside the SEM model structure, but they can now be integrated into

SEM.

For many applications the ESEM model can be considered as a replacement of the

more restrictive SEM model. Unlike EFA analysis, which is typically followed by a CFA
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analysis, the ESEM model does not need to be followed by a SEM model, because it

has all of the features and flexibilities of the SEM model. Nevertheless, in certain cases

it may be beneficial to follow an ESEM model by a SEM model. For example, in small

sample size studies a follow-up SEM model may have more precise estimates because it

has fewer parameters. Constructing a follow-up SEM model from a given ESEM model

is fairly easy, amounting to fixing at 0 all insignificant loadings. In addition, because

the ESEM and SEM models are typically nested a rigorous test can be conducted to

evaluate the restrictions imposed by the SEM model.

The ESEM modeling framework does not limit the researcher’s ability to incorpo-

rate substantive information in the model. The researcher can use different rotation

criteria to reach the factor pattern that most closely represents the substantive think-

ing, without sacrificing the fit of the model.

The paper also discusses the performance of rotation techniques in Monte Carlo

studies, showing the advantage of Geomin. Target rotation is shown to provide an

approach that bridges EFA and CFA measurement specification.

Longitudinal and multiple-group analysis with EFA measurement structures greatly

expands the possibilities of both EFA and SEM. The paper illustrates multiple group

analysis in both a real-data and a simulation study.

Another advantage of the ESEM framework is that it easily accommodates EFA

simulation studies. Such studies have been rarely published previously. In this new

framework EFA simulation studies are as simple as SEM simulation studies. Simulation

studies can greatly enhance this research field.

One of the limitations of the ESEM framework is the fact that any structural path

between an exploratory factor and another variable can be included in the model only

if such a path is included for all exploratory factors from the same exploratory block.

There are two reasons for that. First, with a general rotation criteria such as Geomin

the exploratory factors are interchangeable and one would not be able to specify a

path using an exploratory factor without knowing which factor that is. With the

target rotation that is not an issue because the factors are not interchangeable. The

second reason is computational. The methodology presented in this article does not
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provide a way to construct different structural paths for exploratory factors from the

same block. Expanding the methodology in that direction would be a valuable future

development. Note however that this limitation is relatively harmless. If a structural

path is needed between an exploratory variable and another variable, simply adding

the same structural path for all the exploratory factors in the same block will not harm

the model beyond making it less parsimonious. If indeed these added structural paths

are not needed their estimates will be near zero and would essentially preserve the

correct model. Another limitation of the presented methodology is that exploratory

factors from the same block can not be regressed on each other and cannot have a

structured variance covariance matrix such as second order factor analysis.

The ESEM approach is implemented in Mplus Version 5.1 and is developed not only

for continuous outcomes with maximum-likelihood estimation but also for dichotomous,

ordered categorical, censored and combinations of such outcomes with continuous out-

comes with limited-information weighted least squares estimation. Other analysis fea-

tures available include model modification indices, standardized coefficients and their

standard errors, estimation of indirect effects and their standard errors, factor scores,

and Monte Carlo simulations.
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APPENDIX A. ADDITIONAL ROTATION CRITERIA

Following is a list of additional rotation criteria implemented in Mplus.

• CF-Varimax
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For orthogonal rotations this criterion is equivalent to the Varimax criterion
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• Quartimin/CF-Quartimax

f(Λ) =
p∑
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ijλ

2
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For orthogonal rotations this criterion is equivalent to the Quartimax criterion
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• CF-Equamax

f(Λ) =
2p−m

2p

p∑
i=1

m∑
j=1

m∑
l 6=j,l=1

λ2
ijλ

2
il +

m

2p

m∑
j=1

p∑
i=1

p∑
l 6=i,l=1

λ2
ijλ

2
lj (51)

• CF-Parsimax
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• CF-Facparsim, Factor Parsimony

f(Λ) =
m∑
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ijλ
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• Crawfer, Crawford-Ferguson family

f(Λ) = (1− k)
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where k is a parameter.
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• Oblimin

f(Λ) =
m∑

j=1

m∑
l 6=j,l=1

(
p

p∑
i=1

λ2
ijλ

2
il − k

p∑
i=1

λ2
ij

p∑
i=1

λ2
il)

)
(55)

where k is the parameter.

APPENDIX B. ROW STANDARDIZATION

Typically the optimal rotation is determined by minimizing the rotation criteria using

the standardized loadings, i.e., the loadings standardized to correlation scale as in

equations (10) and (11). An alternative standardization frequently used in practice

is the Kaiser standardization. In that case the optimal rotation is determined by

minimizing the rotation criteria

f(D−1
d ΛH−1) (56)

over all oblique or orthogonal matrices H where

Dd =
√
diag(ΛΛT ) (57)

Another alternative approach implemented in Mplus is to determine the optimal ro-

tation by using the raw loadings matrix, using the original scales of the variables. In

that case

f(ΛH−1) (58)

is minimized over all oblique or orthogonal matrices H.18

APPENDIX C. EFA STANDARD ERRORS

The asymptotic distribution of the rotated solution is based on the following general

fit function method. Suppose that S0 is a correlation matrix and Σ0 is the estimated

correlation matrix, based on an EFA model. Let F (S0,Σ0) be a general fit function

that is minimized to obtain the EFA parameters Λ and Ψ under the rotation constraints

18The standardization option is controlled in Mplus by the RowStandardization= command and the three

options described above are RowStandardization= Correlation, Kaiser or Covariance.
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(7) or (9), and denote these constraint equations by R. Two examples of such functions

are the likelihood fit function

F (S0,Σ0) = ln(|Σ0|) + Tr(Σ−1
0 S0) (59)

and the least squares fit function

F (S0,Σ0) =
∑
i<j

(σ0ij − s0ij)2. (60)

It is possible to obtain the asymptotic distribution of the rotated solutions using the

asymptotic distribution of S0. Using the Lagrange multipliers method the rotated

solution is also the local extremum for the augmented function

F1(S0,Σ0) = F (S0,Σ0) + LTR (61)

where L is a vector of new parameters. The asymptotic distribution for the parameters

that minimize the new fit function is obtained, see Theorem 4.1 in Amemiya (1985),

by the sandwich estimator

(F ′′
1 )−1V ar(F ′

1)(F
′′
1 )−1 (62)

where the second derivative with respect to the model parameters and the new param-

eters L is given by

F ′′
1 =

(
F ′′ R′

R′ 0

)
. (63)

The above matrix is called the bordered information matrix when the fit function is

the likelihood fit function. In fact, the inverse of that matrix alone can be used as an

estimator of the asymptotic distribution of the maximum-likelihood estimates. The

middle term in (62) is the variance of the score and is computed as follows

V ar(F ′
1) =

∂2F1

∂θ∂S0
V ar(S0)

(
∂2F1

∂θ∂S0

)T

(64)

where θ is the vector of model parameters and

∂2F1

∂θ∂S0
=

( ∂2F
∂θ∂S0

0

)
. (65)

The general fit function method described above is utilized in ESEM as follows. Us-

ing the asymptotic distribution of the unrotated solution, the asymptotic distribution
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of the estimated correlation matrix is computed via the delta method. The asymp-

totic distribution of the rotated solution is then obtained from the general fit function

method by substituting the estimated correlation matrix for S0 above and using either

the (59) or (60) fit functions. Because the fit of the model is perfect, both fit functions

lead to the same result.

APPENDIX D. SIMULATION STUDIES WITH ESEM AND EFA

In ESEM as well as EFA analysis the order of all factors is interchangeable and each

factor is interchangeable with its negative. These indeterminacies are typically not

important. However, they are important in simulation studies where accumulations

across the different replications is done to evaluate mean-squared error (MSE), param-

eter estimates bias and, confidence interval coverage.

To avoid this problem additional parameter constraints are used. For example, to

identify a factor over its negative the following restriction on the loadings is incorpo-

rated ∑
i

λij > 0. (66)

In addition, to make sure that the factors appear consistently in the same order across

the replications the following quantities are computed

dj =
average index of the large loadings∑

i λ
2
ij

(67)

where the large loadings are the loadings that are at least 0.8 of the largest loading.

For example suppose that the loadings of a factor are (0.2, 1, 0.9, 0.9, 0, 0.1). The

large loadings are loadings 2, 3 and 4, and therefore the average index of the large

loadings is 3. The factors are ordered so that

d1 < d2 < ... < dm. (68)

This rule guarantees that factors with large loadings on the first dependent variables

will tend to appear first19. In addition, factors that explain more of the dependent

19In simulation studies for SEM models Mplus uses user specified starting values to ensure that the order

of the factors is the same across the replications. However, ESEM and EFA analysis in Mplus do not use

user specified starting values.
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variables’ covariance matrix will appear first. This is the effect of the denominator in

the definition of dj .

Simulation studies that are presented here are constructed in a way that ensures

that the order of the factors is the same across the replications as well as the sign of

the factors. The constraints (66) and (68), however, will not work for any simulation

study and a different set of constraints may have to be used to ensure stable factor

order and factor signs. Simulation studies that do not include proper constraints

similar to (66) and (68) will lead to meaningless results as they will combine factor

loadings from different factors across the replications. Such simulation studies will not

give good results and will not provide any information for the quality of the estimation

method. Parameter constraints (66) and (68) are important only for simulation studies.

These constraints have no implication for a single replication analysis such as real

data analysis. It is well known that the order of the factor is exchangeable and that

each factor can be replaced with its negative. Because the data does not contain any

information about the order of the factors or their signs, it is up to the analyst to make

that choice20.

A new alignment method is implemented in Mplus Version 5.2. This alignment

method utilizes the starting values provided by the user. The starting values are

actually not used during the optimization routine but are used as true parameter values

to compute the coverage probabilities for the estimated confidence limits. Denote these

starting values as λ0ij The new alignment criteria minimizes the target function

∑
i,j

(λ0ij − sjλiσ(j))
2

over all factor permutations σ and sign assignments sj = 1 or −1. Thus the solution

that is selected is the one that is the closest to the starting value in the least squares

metric.

20Mplus will use the constraints (66) and (68) even for real data analysis, so the factors and their signs

are always uniquely determined by Mplus.
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APPENDIX E. MPLUS INPUT

Following is the Mplus input for the small cross loadings simulation study presented

earlier. Comments lines begin with (!) and are provided here only for clarity. They

are not needed in general.

! this section specifies the simulation framework

montecarlo:

names = y1-y10 x;

nobs = 1000;

nreps = 100;

! this section specifies the parameters for the data generation

model population:

[x@0]; x@1;

f1 by y1-y5*.8 y6-y10*0;

f2 by y1-y3*0 y4-y5*.25 y6-y10*.8;

y1-y10*.36; [y1-y10*0];

f1-f2@1;

f1 with f2*.5;

f1 on x*.5;

f2 on x*1;

! this section specifies the rotation type

analysis: rotation = geomin(0.0001);

! this section specifies the model to be estimated and the true

! values to be used for confidence interval coverage rates
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model:

f1 by y1-y5*.8 y6-y10*0 (*1);

f2 by y1-y3*0 y4-y5*.25 y6-y10*.8(*1);

y1-y10*.36; [y1-y10*0];

f1 with f2*.5;

f1 on x*.5;

f2 on x*1;
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Table 1: Two-group EFA estimates for Grade 3 aggressive-disruptive behavior

Items Verbal Person Property

Stubborn 1.19 0.00 -0.01

Breaks rules 0.73 0.22 0.01

Harms others and property 0.01 0.43 0.18

Breaks things -0.02 0.01 0.31

Yells at others 0.94 0.19 -0.03

Takes others’ property 0.36 0.02 0.25

Fights 0.36 0.62 -0.02

Harms property 0.13 0.03 0.36

Lies 0.77 0.00 0.18

Talks back to adults 0.87 -0.03 0.17

Teases classmates 0.58 0.34 0.02

Fights with classmates 0.42 0.49 0.03

Loses temper 0.87 0.15 -0.00

Females

Factor means 0.00 0.00 0.00

Factor variances 1.00 1.00 1.00

Factor correlations

F2 0.76

F3 0.38 0.61

Males

Factor means 0.35 0.69 0.80

Factor variances 1.18 2.70 5.75

Factor correlations

F2 0.54

F3 0.52 0.65
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Table 2: Comparison of ESEM and CFA-SEM with small cross loadings. Average parameter

estimates.

Para- True CFA- ESEM ESEM ESEM

meter Value SEM Quartimin Geomin(0.01) Geomin(0.0001)

λ11 0.80 0.75 0.84 0.82 0.81

λ21 0.80 0.75 0.83 0.82 0.80

λ31 0.80 0.75 0.83 0.82 0.81

λ41 0.80 0.99 0.84 0.82 0.81

λ51 0.80 0.99 0.84 0.83 0.81

λ61 0.00 0.00 0.01 0.01 0.00

λ71 0.00 0.00 0.01 0.01 0.00

λ81 0.00 0.00 0.01 0.01 0.00

λ91 0.00 0.00 0.01 0.01 0.00

λ101 0.00 0.00 0.01 0.01 0.00

λ12 0.00 0.00 -0.06 -0.03 -0.01

λ22 0.00 0.00 -0.06 -0.03 -0.01

λ32 0.00 0.00 -0.06 -0.04 -0.01

λ42 0.25 0.00 0.18 0.21 0.24

λ52 0.25 0.00 0.18 0.21 0.23

λ62 0.80 0.80 0.80 0.80 0.80

λ72 0.80 0.80 0.80 0.79 0.80

λ82 0.80 0.80 0.80 0.80 0.80

λ92 0.80 0.80 0.80 0.79 0.80

λ102 0.80 0.80 0.80 0.80 0.80

β1 0.50 0.61 0.56 0.54 0.52

β2 1.00 1.00 1.00 1.00 1.00

ψ12 0.50 0.61 0.55 0.53 0.51
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Table 3: Comparison of ESEM and CFA-SEM with small cross loadings. Confidence intervals

coverage.

Para- CFA- ESEM ESEM ESEM

meter SEM Quartimin Geomin(0.01) Geomin(0.0001)

λ11 0.54 0.77 0.85 0.90

λ21 0.48 0.87 0.97 0.97

λ31 0.48 0.82 0.93 0.95

λ41 0.00 0.78 0.86 0.95

λ51 0.00 0.76 0.88 0.95

λ61 1.00 0.98 0.97 1.00

λ71 1.00 0.95 0.94 0.97

λ81 1.00 0.96 0.98 1.00

λ91 1.00 0.95 0.95 1.00

λ101 1.00 0.95 0.92 0.97

λ12 1.00 0.05 0.50 0.95

λ22 1.00 0.05 0.46 0.96

λ32 1.00 0.02 0.38 0.97

λ42 0.00 0.24 0.66 0.91

λ52 0.00 0.09 0.67 0.89

λ62 0.99 0.98 0.97 0.98

λ72 0.99 0.95 0.94 0.97

λ82 0.94 0.96 0.96 0.96

λ92 0.95 0.97 0.97 0.99

λ102 0.94 0.97 0.97 0.97

β1 0.13 0.59 0.83 0.94

β2 0.96 0.97 0.97 0.97

ψ12 0.01 0.44 0.77 0.93
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Table 4: Rotation of population loading matrix.

Λ Λq Λ0.01 Λ0.0001

0.80 0.00 0.80 -0.07 0.82 -0.03 0.80 -0.01

0.80 0.00 0.80 -0.07 0.82 -0.03 0.80 -0.01

0.80 0.00 0.80 -0.07 0.82 -0.03 0.80 -0.01

0.80 0.25 0.80 0.18 0.82 0.21 0.80 0.24

0.80 0.25 0.80 0.18 0.82 0.21 0.80 0.24

0.00 0.80 0.01 0.83 0.01 0.79 0.00 0.80

0.00 0.80 0.01 0.83 0.01 0.79 0.00 0.80

0.00 0.80 0.01 0.83 0.01 0.79 0.00 0.80

0.00 0.80 0.01 0.84 0.01 0.79 0.00 0.80

0.00 0.80 0.01 0.84 0.01 0.79 0.00 0.80

Table 5: Rotation of population correlation matrix.

Ψ Ψq Ψ0.01 Ψ0.0001

1.00 0.50 1.00 0.55 1.00 0.52 1.00 0.51

0.50 1.00 0.55 1.00 0.52 1.00 0.51 1.00
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Table 6: Two-group ESEM-Geomin analysis

n=100 n=500 n=100 n=500

Para- True Average Average

meter Value Estimate Estimate Coverage Coverage

λ11 0.80 0.76 0.79 0.92 0.95

λ12 0.00 0.04 0.01 0.97 0.99

ψ121 0.50 0.42 0.49 0.98 0.98

ν11 1.00 0.99 0.99 0.94 0.98

θ111 1.00 0.97 1.00 0.93 0.99

α12 0.50 0.47 0.51 0.93 0.91

α22 0.80 0.81 0.82 0.96 0.95

ψ122 1.00 0.92 0.98 0.92 0.96

ψ112 1.50 1.58 1.50 0.92 0.96

ψ222 2.00 2.03 2.02 0.93 0.95

θ112 2.00 1.96 1.99 0.96 0.96
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Table 7: Two-group ESEM analysis, small sample size comparison of ESEM-Geomin, ESEM-

Target, and SEM.

ESEM ESEM

Geomin Target SEM ESEM ESEM

Para- True Average Average Average Geomin Target SEM

meter Value Estimate Estimate Estimate MSE MSE MSE

λ11 0.80 0.76 0.77 0.78 0.021 0.022 0.010

λ12 0.00 0.04 0.02 0.00 0.014 0.012 0.000

ψ121 0.50 0.42 0.45 0.48 0.021 0.014 0.012

ν11 1.00 0.99 0.99 0.99 0.016 0.016 0.017

θ111 1.00 0.97 0.97 0.98 0.027 0.027 0.025

α12 0.50 0.47 0.48 0.49 0.044 0.043 0.041

α22 0.80 0.81 0.82 0.82 0.041 0.040 0.040

ψ122 1.00 0.92 0.99 1.04 0.107 0.095 0.101

ψ112 1.50 1.58 1.59 1.60 0.284 0.291 0.275

ψ222 2.00 2.03 2.04 2.05 0.305 0.298 0.292

θ112 2.00 1.96 1.96 1.96 0.097 0.097 0.096
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Table 8: General Factor ESEM analysis with orthogonal rotation

Para- True Geomin Varimax Geomin Varimax

meter Value Average Average Coverage Coverage

λ11 1.00 1.00 0.58 0.91 0.00

λ12 0.00 -0.01 0.57 1.00 0.00

λ13 0.00 0.01 0.58 0.98 0.00

λ41 1.00 1.01 0.90 0.96 0.71

λ42 0.50 0.49 0.37 0.94 0.00

λ43 0.00 0.00 0.47 0.98 0.00

λ81 1.00 1.00 0.45 0.96 0.00

λ82 0.00 -0.01 0.31 0.98 0.00

λ83 0.50 0.50 0.96 0.97 0.00
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Table 9: Complexity 3 ESEM analyses. Average estimates.

Para- True Geomin Geomin Target

meter Value ε = 0.0001 ε = 0.01

λ11 1.00 1.00 1.00 1.00

λ12 0.00 0.00 -0.03 0.00

λ13 0.00 0.00 0.01 0.00

λ14 0.00 0.00 0.00 0.00

λ51 0.00 0.00 0.00 0.00

λ52 1.00 1.00 0.99 1.00

λ53 0.50 0.49 0.45 0.50

λ54 0.00 0.00 0.00 0.00

λ101 0.00 0.00 0.00 0.00

λ102 0.50 0.25 0.44 0.50

λ103 0.50 0.25 0.41 0.50

λ104 1.00 1.12 1.01 1.01

ψ12 0.00 0.00 0.03 -0.01

ψ34 0.00 0.22 0.06 0.00
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Table 10: Complexity 3 ESEM analyses. Coverage.

Para- Geomin Geomin Target

meter ε = 0.0001 ε = 0.01

λ11 0.94 0.94 0.94

λ12 1.00 0.12 1.00

λ13 0.97 0.87 1.00

λ14 0.97 0.92 1.00

λ51 0.98 0.97 0.94

λ52 0.98 0.97 0.99

λ53 0.99 0.26 0.99

λ54 0.90 0.90 0.95

λ101 0.99 0.93 0.97

λ102 0.50 0.22 0.95

λ103 0.45 0.05 0.97

λ104 0.00 0.94 0.94

ψ12 0.97 0.61 0.94

ψ34 0.45 0.08 0.94
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